Tissue polarity points from cells that have higher Frizzled levels towards cells that have lower Frizzled levels

نویسندگان

  • Paul N. Adler
  • Randi E. Krasnow
  • Jingchun Liu
چکیده

BACKGROUND The frizzled (fz) gene of Drosophila encodes the founding member of the large family of receptors for the Wnt family of signaling molecules. It was originally studied in the adult epidermis, where it plays a key role in the generation of tissue polarity. Mutations in components of the fz signal transduction pathway disrupt tissue polarity; on the wing, hairs normally point distally but their polarity is altered by these mutations. RESULTS We devised a method to induce a gradient of fz expression with the highest levels near the distal wing tip. The result was a large area of proximally pointing hairs in this region. This reversal of polarity was seen when fz expression was induced just before the start of hair morphogenesis when polarity is established, suggesting that the gradient of Fz protein acted fairly directly to reverse hair polarity. A similar induction of the dishevelled (dsh) gene, which acts cell autonomously and functions downstream of fz in the generation of tissue polarity, resulted in a distinct tissue polarity phenotype, but no reversal of polarity; this argues that fz signaling was required for polarity reversal. Furthermore, the finding that functional dsh was required for the reversal of polarity argues that the reversal requires normal fz signal transduction. CONCLUSIONS The data suggest that cells sense the level of Fz protein on neighboring cells and use this information in order to polarize themselves. A polarizing signal is transmitted from cells with higher Fz levels to cells with lower levels. Our observations enable us to propose a general mechanism to explain how Wnts polarize target cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C. elegans MOM-5/Frizzled Functions in MOM-2/Wnt-Independent Cell Polarity and Is Localized Asymmetrically prior to Cell Division

C. elegans embryonic cells have a common anterior/posterior (a/p) polarity that is apparent in the localization of the transcription factor POP-1. The level of nuclear POP-1 remains high in the anterior daughters of dividing cells but is lowered in the posterior daughters. To generate POP-1 asymmetry, most early embryonic cells require contact with signaling cells that express the ligand MOM-2/...

متن کامل

Mutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering frizzled signaling.

The adult cuticular wing of Drosophila is covered by an array of distally pointing hairs that reveals the planar polarity of the wing. We report here that mutations in dachsous disrupt this regular pattern, and do so by affecting frizzled signaling. dachsous encodes a large membrane protein that contains many cadherin domains and dachsous mutations cause deformed body parts. We found that mutat...

متن کامل

Prickle Mediates Feedback Amplification to Generate Asymmetric Planar Cell Polarity Signaling

Planar cell polarity signaling in Drosophila requires the receptor Frizzled and the cytoplasmic proteins Dishevelled and Prickle. From initial, symmetric subcellular distributions in pupal wing cells, Frizzled and Dishevelled become highly enriched at the distal portion of the cell cortex. We describe a Prickle-dependent intercellular feedback loop that generates asymmetric Frizzled and Disheve...

متن کامل

The grainy head transcription factor is essential for the function of the frizzled pathway in the Drosophila wing

The Drosophila wing is covered by an array of distally pointing hairs. This tissue planar polarity is regulated by the frizzled pathway. We have found that the function of the grainy head transcription factor is essential for the function of the frizzled pathway. grainy head mutant cells fail to localize planar polarity proteins at either the proximal or distal sides of wing cells and produce m...

متن کامل

Identification and cloning of a secreted protein related to the cysteine-rich domain of frizzled. Evidence for a role in endothelial cell growth control.

We report the isolation of a cDNA, FrzA (frizzled in aorta; GenBank accession No. U85945), from bovine aortic endothelium. It is the bovine counterpart of the mouse sFRP1, which encodes for a secreted protein that is homologous to the cysteine-rich domain of frizzled. Members of the frizzled family of genes have been shown to be required for tissue polarity and to act as receptors for Wnt. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1997